Scanning Tunneling Microscopy of the π Magnetism of a Single Carbon Vacancy in Graphene.
نویسندگان
چکیده
Pristine graphene is strongly diamagnetic. However, graphene with single carbon atom defects could exhibit paramagnetism. Theoretically, the π magnetism induced by the monovacancy in graphene is characteristic of two spin-split density-of-states (DOS) peaks close to the Dirac point. Since its prediction, many experiments have attempted to study this π magnetism in graphene, whereas only a notable resonance peak has been observed around the atomic defects, leaving the π magnetism experimentally elusive. Here, we report direct experimental evidence of π magnetism by using a scanning tunneling microscope. We demonstrate that the localized state of the atomic defects is split into two DOS peaks with energy separations of several tens of meV. Strong magnetic fields further increase the energy separations of the two spin-polarized peaks and lead to a Zeeman-like splitting. Unexpectedly, the effective g factor around the atomic defect is measured to be about 40, which is about 20 times larger than the g factor for electron spins.
منابع مشابه
Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon
Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...
متن کاملEffects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions
A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...
متن کاملPoint defects on graphene on metals.
Understanding the coupling of graphene with its local environment is critical to be able to integrate it in tomorrow's electronic devices. Here we show how the presence of a metallic substrate affects the properties of an atomically tailored graphene layer. We have deliberately introduced single carbon vacancies on a graphene monolayer grown on a Pt(111) surface and investigated its impact in t...
متن کاملLocalized states at zigzag edges of multilayer graphene and graphite steps
We report the existence of zero energy surface states localized at zigzag edges of Nlayer graphene. Working within the tight-binding approximation, and using the simplest nearestneighbor model, we derive the analytic solution for the wavefunctions of these peculiar surface states. It is shown that zero energy edge states in multilayer graphene can be divided into three families: (i) states livi...
متن کاملInfluence of the Vacancies on the Buckling Behavior of a Single–Layered Graphene Nanosheet
Graphene is a new class of two-dimensional carbon nanostructure, which holds great promise for the vast applications in many technological fields. It would be one of the prominent new materials for the next generation nano-electronic devices. In this paper the influence of various vacancy defects on the critical buckling load of a single-layered graphene nanosheet is investigated. The nanosheet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 117 16 شماره
صفحات -
تاریخ انتشار 2016